Long-term inhibition by auxin of leaf blade expansion in bean and Arabidopsis.
نویسندگان
چکیده
The role of auxin in controlling leaf expansion remains unclear. Experimental increases to normal auxin levels in expanding leaves have shown conflicting results, with both increases and decreases in leaf growth having been measured. Therefore, the effects of both auxin application and adjustment of endogenous leaf auxin levels on midrib elongation and final leaf size (fresh weight and area) were examined in attached primary monofoliate leaves of the common bean (Phaseolus vulgaris) and in early Arabidopsis rosette leaves. Aqueous auxin application inhibited long-term leaf blade elongation. Bean leaves, initially 40 to 50 mm in length, treated once with alpha-naphthalene acetic acid (1.0 mm), were, after 6 d, approximately 80% the length and weight of controls. When applied at 1.0 and 0.1 mm, alpha-naphthalene acetic acid significantly inhibited long-term leaf growth. The weak auxin, beta-naphthalene acetic acid, was effective at 1.0 mm; and a weak acid control, benzoic acid, was ineffective. Indole-3-acetic acid (1 microm, 10 microm, 0.1 mm, and 1 mm) required daily application to be effective at any concentration. Application of the auxin transport inhibitor, 1-N-naphthylphthalamic acid (1% [w/w] in lanolin), to petioles also inhibited long-term leaf growth. This treatment also was found to lead to a sustained elevation of leaf free indole-3-acetic acid content relative to untreated control leaves. Auxin-induced inhibition of leaf growth appeared not to be mediated by auxin-induced ethylene synthesis because growth inhibition was not rescued by inhibition of ethylene synthesis. Also, petiole treatment of Arabidopsis with 1-N-naphthylphthalamic acid similarly inhibited leaf growth of both wild-type plants and ethylene-insensitive ein4 mutants.
منابع مشابه
Involvement of auxin and brassinosteroid in the regulation of petiole elongation under the shade.
Plants grown under a canopy recognize changes in light quality and modify their growth patterns; this modification is known as shade avoidance syndrome. In leaves, leaf blade expansion is suppressed, whereas petiole elongation is promoted under the shade. However, the mechanisms that control these responses are largely unclear. Here, we demonstrate that both auxin and brassinosteroid (BR) are r...
متن کاملCharacterization of temperature-sensitive mutants reveals a role for receptor-like kinase SCRAMBLED/STRUBBELIG in coordinating cell proliferation and differentiation during Arabidopsis leaf development.
The balance between cell proliferation and cell differentiation is essential for leaf patterning. However, identification of the factors coordinating leaf patterning and cell growth behavior is challenging. Here, we characterized a temperature-sensitive Arabidopsis mutant with leaf blade and venation defects. We mapped the mutation to the sub-2 allele of the SCRAMBLED/STRUBBELIG (SCM/SUB) recep...
متن کاملYUCCA genes are expressed in response to leaf adaxial-abaxial juxtaposition and are required for leaf margin development.
During leaf development, the formation of leaf adaxial-abaxial polarity at the primordium stage is crucial for subsequent leaf expansion. However, little is known about the genetic control from polarity establishment to blade outgrowth. The leaf margin, comprising elongated margin cells and hydathodes, is thought to affect leaf expansion. Here, we show that mutants with defective leaf polarity ...
متن کاملAbscission: the initial effect of ethylene is in the leaf blade.
The leaf blade of cotton (Gossypium hirsutum L. cv. Stoneville 213) was investigated as the initial site of ethylene action in abscission. Ethylene applied at 14 mul/l to intact 3-week-old plants caused abscission of the third true leaf within 3 days. However, keeping only the leaf blade of this leaf in air during ethylene treatment of the rest of the plant completely prevented its abscission f...
متن کاملResponses of plant vascular systems to auxin transport inhibition.
To assess the role of auxin flows in plant vascular patterning, the development of vascular systems under conditions of inhibited auxin transport was analyzed. In Arabidopsis, nearly identical responses evoked by three auxin transport inhibitor substances revealed an enormous plasticity of the vascular pattern and suggest an involvement of auxin flows in determining the sites of vascular differ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 134 3 شماره
صفحات -
تاریخ انتشار 2004